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K U H N

It gives me great pleasure to chair this seminar on the importance of Nash’s
work on the occasion of the first Nobel award that recognizes the central
importance of game theory in current economic theory. I shall be joined by
two colleagues whom I’ve known for over thirty years, John Harsanyi and
Reinhard Selten, two new friends, Jörgen Weibull and Eric van Damme, and
John Nash, whom I’ve known since we were graduate students together in
Princeton forty-six years ago.

The timing of these awards has historical significance, since this year is the
fiftieth anniversary of the publication of  “The Theory of  Games and
Economic Behavior” [52] by the Princeton University Press. Although von
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Neumann had laid the mathematical foundation of the theory of games in
his paper entitled “Zur Theorie der Gesellshaftsspiele” [51], published in the
Mathematische Annalen in 1928, it was largely through the collaboration of
von Neumann and Morgenstern that economists learned of this new tool for
analyzing economic problems.

Some of you may have read Morgenstern’s own account [33] of this colla-
boration. There is a new historical study [29] by Robert Leonard of the
University of Quebec at Montreal that points out that “understandably, but
regrettably, Morgenstern’s reminiscence sacrifices some of the historical
complexity of the run up to 1944.” Leonard’s study gives most of the credit
for the creation of game theory to von Neumann who had written essential-
ly all of the mathematical manuscript nine months before Morgenstern ever
saw it. Nevertheless, had von Neumann and Morgenstern never met, it
seems unlikely that we would be here today celebrating the central role of
the theory of games in economics.

This leads to a natural question which has been asked repeatedly by jour-
nalists in the last two months: ‘Why did it take fifty years for these new ideas
to be recognized?” To give a partial answer to this question, we must look
more closely at the developments in the late forties and early fifties. A cruci-
al fact is that von Neumann’s theory was too highly mathematical for eco-
nomists. Therefore, the theory of games was developed almost exclusively by
mathematicians during this period. To describe the spirit of the time, allow
me to quote from Robert J. Aumann’s magnificent article [3] on game the-
ory in the New Palgrave Dictionary “The period of the late 40’s and early 50’s
was a period of excitement in game theory. The discipline had broken out of
its cocoon and was testing its wings. Giants walked the earth. At Princeton,
John Nash laid the groundwork for the general non-cooperative theory and
for cooperative bargaining theory. Lloyd Shapley defined the value for coa-
litional games, initiated the theory of stochastic games, coinvented the core
with D.B. Gillies, and together with John Milnor developed the first game
models with a continuum of players. Harold Kuhn reformulated the exten-
sive form of a game, and worked on behavior strategies and perfect recall. Al
Tucker discovered the Prisoner’s Dilemma, and supported a number of
young game theorists through the Office of Naval Research.”

H ARSANYI

When did Tucker discover the Prisoner’s Dilemma?

K U H N

Al Tucker was on leave at Stanford in the Spring of 1950 and, because of the
shortage of offices, he was housed in  the Psychology Department. One day
a psychologist knocked on his door and asked what he was doing. Tucker
replied: “I’m working on game theory.“, and the psychologist asked if he
would give a seminar on his work. For that seminar, Al Tucker invented the
Prisoner’s Dilemma as an example of game theory, Nash equilibria, and the
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attendant paradoxes of non-socially-desirable equilibria. A truly seminal
example, it inspired dozens of research papers and several entire books.

It is important to recognize that the results that I have enumerated did not
respond to some suggestion of von Neumann, nor did they follow work that
he had outlined or proposed; rather they were revolutionary new ideas that
ran counter to von Neumann’s theory. In almost every instance, it was a
repair of some inadequacy of the theory as outlined by von Neumann and
Morgenstern, and indeed in the case of Nash’s cooperative and general non-
cooperative theory, von Neumann and Morgenstern criticized it publicly on
several occasions. In the case of the extensive form, von Neumann claimed
that it was impossible to give a practical geometric extensive form. All of the
results that Aumann cited were obtained by members of the Mathematics
Department at Princeton University. At the same time, the RAND Cor-
poration, funded by the US Air Force, which was to be for many years the
other major center of game-theoretic research, had just opened its doors in
Santa Monica.

This suggests a second part of our answer to the question: “Why did it take
so long for economists to recognize game theory as crucial to their held?” It
is a historical fact that initially the main financial support for research in this
area came from military agencies in the United States. Quoting Aumann
again, “The major applications were to tactical military problems: defense
from missiles, Colonel Blotto assignment problems, fighter-fighter duels, etc.
Later the emphasis shifted to deterrence and cold war strategy with contri-
butions by political scientists like Herman Kahn, Kissinger, and Schelling.”

In any event, it was into this environment at Princeton of research ferment
that the twenty-year old John Nash came in September of 1948. He came to
the Mathematics Department with a one sentence letter of recommendation
from R.L. Duffin of Carnegie Institute of Technology. This letter said, sim-
ply: “This man is a genius.” As his thesis advisor, Professor A.W. Tucker was
to write several years later: “At times I have thought this recommendation
was extravagant, but the longer I’ve known Nash the more I am inclined to
agree that Duffin was right.” If we do the arithmetic of subtracting the date
of Nash’s arrival in Princeton, which was September 1948, from the date of
submission by Solomon Lefschetz to the Proceedings of the National
Academy of Sciences of the main result of Nash’s thesis, November 1949, we
find the results for which he is being honored this week were obtained in his
first fourteen months of graduate study. It is a fine goal to set before the gra-
duate students who are in the audience today. We shall return to the thesis
later.

Although the speed with which Nash obtained these results is surprising,
equally surprising and certainly less widely known is that Nash had already
completed an important piece of work on bargaining while still an under-
graduate at the Carnegie Institute of Technology. This work, a paper for an
elective course in international economics, possibly the only formal course
in economics he has ever had, was done in complete ignorance of the work
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of von Neumann and Morgenstern. In short, when he did this work he did-
n’t know that game theory existed. This result, which is a model of theoreti-
cal elegance, posits four reasonable requirements or axioms: (1), that any
solution should be invariant under positive linear affine transformations of
the utility functions, (2), that the solution should be efficient in the sense of
Pareto optimality, (3), that irrelevant alternatives should not change the out-
come of the solution, and (4), that bargaining problems with symmetric out-
come sets should have symmetric solutions. If these four reasonable condi-
tions are satisfied then there is a unique solution, namely, the outcome that
maximizes the product of the players’ utilities. There is evidence in the
published form of this paper, [37], that, before it appeared in Econometrica
in 1950, he had met von Neumann and Morgenstern. This evidence is a
reference to Cournot, Bowley, Tintner, and Fellner. It is almost certain that
these were added at the suggestion of Morgenstern, because I don’t think
John has even read these papers as of now.

If it is clear that Nash had not read those writers, it is equally clear that this
paper was written by a teenager. The evidence is that the objects in the exam-
ple to be bargained over are a bat, a ball, a toy, and a knife. No amount of
urging by his colleagues, or by the editor of Econometrica, persuaded John
to change this example.

I should now like to discuss the thesis itself and show you some sections of
John’s work from the actual document. We already know that the main
result, the definition of a Nash equilibrium, and a proof of existence had
been completed prior to November 1949, the date of submission by
Lefschetz to the National Academy of Sciences. The thesis itself was comple-
ted and submitted after the persistent urging and counsel of Professor
Tucker. John always wanted to add more material, and Tucker had the wis-
dom to say “get the result out early.” It was submitted and accepted by the
Mathematics Department in May of 1950.

The formal rules at Princeton require that the thesis must be read by two
professors, who prepare a report evaluating the work. In this case, the rea-
ders were Tucker and the statistician, John Tukey; the evaluation was written
by Tucker himself. He wrote, “This is a highly original and important con-
tribution to the Theory of Games. It develops notions and properties of
“non-cooperative games,” finite n-person games which are very interesting in
themselves and which may open up many hitherto untouched problems that
lie beyond the zero-sum two-person case. Both in conception and in execu-
tion this thesis is entirely the author’s own.”

In my discussion of the thesis itself, I shall try not to duplicate observations
that will be made by later speakers. Some overlap is inevitable. For example,
the abstract begins boldly: “This paper introduces the concept of a non-
cooperative game and develops methods for the mathematical analysis of
such games.” Take careful note, there had been no general theory of non-
cooperative games before this thesis. Although he was using the same strate-
gic form as had been developed by von Neumann, the theory which occupies



164 Economic Sciences 1994

fully half of the von Neumann and Morgenstern book deals with cooperati-
ve theory envisaging coalitions, side-payments, and binding agreements. In
addition, they proposed as a solution concept a notion we now call a “stable
set”, which need not exist for every game. By contrast, Nash proved by page
6 of his thesis that every n-person finite non-cooperative game has at least
one (Nash) equilibrium point. This is a profile of mixed strategies, one for
each player, which is such that no player can improve his payoff by changing
his mixed strategy unilaterally.

The entire thesis is 27 pages of typescript, very generously double-spaced.
Frankly, I have always considered the most important sections to be the first
6 pages summarized above and the last pages (from page 21 to 26) on moti-
vation, interpretation, and applications. For many years, I have accused John
of padding the thesis in the middle section (15 pages in all).

The two interpretations which form the essential motivation of work to be
described by later speakers occur in the last pages of the thesis. On page 21,
we find: “We shall now take up the mass action interpretation of equilibrium
points.” This interpretation will be discussed in detail by Selten and Weibull.
The second interpretation is found on page 23, where we read: “We now
sketch another interpretation . . . investigating the question: what would be a
“rational” prediction of the behavior to be expected of rational playing the
game in question.” This interpretation will be discussed by van Damme. It
is important to recognize that, although these very influential interpreta-
tions are explicitly in the thesis, they appear in no other publication by Nash.

To conclude my introduction to this seminar, I shall quote Aumann [3]
again:

“[The Nash] equilibrium is without doubt the single game
theoretic solution concept that is most frequently applied in
economics. Economic applications include oligopoly, entry
and exit, market equilibrium, search, location, bargaining,
product quality, auctions, insurance, principal-agent [pro-
blems], higher education, discrimination, public goods,
what have you. On the political front, applications include
voting, arms control and inspection, as well as most inter-
national political models (deterrence, etc.). Biological
applications all deal with forms of strategic equilibrium;
they suggest an interpretation of equilibrium quite different
from the usual overt rationalism. We cannot even begin to
survey all of this literature here.”

It is now my pleasure to introduce an economist whom I have known since
we were co-directors of a Summer Institute on Bargaining and Conflict in
Princeton in 1962: John Harsanyi.
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H A R S A N Y I

In the short period of 1950 - 53, John Nash published four brilliant papers
([35], [37], [38], [39]), in which he made at least three fundamental ly
important contributions to game theory:

(1) He introduced the distinction between cooperative and non-cooperative
games. The former are games in which the players can make enforceable
agreements and can also make irrevocable threats to other players. That is to
say, they can fully commit themselves to specific strategies. In contrast, in non-
cooperative games, such self-commitment is not possible.1

(2) As a natural solution concept for non-cooperative games, he introdu-
ced the concept of equilibrium points ([35], [38]), now usually described as
Nash equilibria. He also established their existence in all finite games.2

(3) As a solution concept for two-person cooperative games, he proposed
the Nash bargaining solution, first for games with fixed threats [37], and later
also for games with variable threats [39]. He also showed that, in the latter
case, the two players’ optimal strategies will have maximin and minimax pro-
perties.

The best way to understand the importance of Nash’s contributions is by
comparing the state of game theory just after publication of von Neumann
and Morgenstern’s book in 1944 with its state after publication of Nash’s four
papers in 1953.

von Neumann and Morgenstern’s book contains an excellent mathemati-
cal analysis of one class of non-cooperative games, viz. of two-person zero-sum
games and of the minimax solution for such games. It contains also an excel-
lent mathematical discussion of one cooperative solution concept, that of sta-
ble sets, for many specific games.

Yet, it so happens that the concept of two-person zero-sum games has very
few real-life applications outside of the military field. The concept of stable
sets has even  fewer empirical applications

Had these two distinguished authors had Nash’s notions of cooperative
and non-cooperative games available to them, then presumably they would
have asked the question of how to act rationally in a two-person nonzero-sum
game or in a more-than-twoperson game if this is played as a non-cooperative
game, permitting no enforceable agreements and no irrevocable threats.
Perhaps they would have asked also whether one could not find for cooperati-
ve games a more convincing solution concept than stable sets are. For instan-
ce, whether one could not find a solution concept yielding sharper-predictions
about the players’ actual payoffs than the concept of stable sets does.

Of course, in actual fact, they did not have these two notions available to
them and therefore did not ask these two questions. But I merely want to
point out how much our ability to ask important game theoretic questions
was enhanced by Nash’s work.

Nash’s contributions described above under (1), (2), and (3) had an
almost immediate effect on game-theoretic research. At first their effect was
to encourage game theorists to develop the theories of cooperative games
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and of non-cooperative games as virtually separate disciplines, and for some
time to devote much more effort to devise alternative cooperative solution
concepts than to further development on non-cooperative game theory.

Then, in about the decade 1970 - 80, the focus of game theoretic research
shifted once more. Interest in cooperative solution concepts decreased whe-
reas interest in non-cooperative games and in non-cooperative-game models
of cooperative games substantially increased.

This shift was due to a number of different factors. But one of these fac-
tors was what came to be known as Nash’s program . One of Nash’s papers
([38], p. 295) contains the following interesting passage:

“The writer has developed a “dynamical” approach to the
study of cooperative games based on reduction to non-coo-
perative form. One proceeds by constructing a model of
the pre-play negotiation so that the steps of [this] negotia-
t i o n  b e c o m e  m o v e s  i n  a  l a r g e r  n o n - c o o p e r a t i v e
game...describing the total situation.

This larger game is then treated in terms of the theory of
this paper3...and if values are obtained [then] they are taken
as the values of the cooperative game. Thus, the problem of
analyzing a cooperative game becomes the problem of
obtaining a suitable, and convincing, non-cooperative
model for the negotiation.”

When game theorists speak of “Nash’s program, ” it is this two-paragraph pas-
sage they have in mind. That is to say, they are talking about the program of
trying to reduce cooperative games to non-cooperative games by means of suita-
ble non-cooperative models of the bargaining process among the players.

It is an interesting fact of intellectual history (if I am right in my reading
of this history) that Nash’s papers in the early 1950’s at first encouraged
game theorists to cultivate cooperative and non-cooperative game theory as lar-
gely independent disciplines, with a concentration on cooperative theory. But
twenty-five years later they encouraged a shift to non-cooperative game theory
and to non-cooperative models of the negotiations among the players.

Both Reinhard Selten and I were very pleased indeed when we learned
that we received our Nobel Memorial Prizes in Economics together with
John Nash. Not only do we both have the highest regard for his work, but
our own work in game theory has been to an important extent based on his.

One of Reinhard’s important contributions was his distinction between
perfect and imperfect Nash equilibria. It was based on his realization that even
strategy combinations fully satisfying Nash’s definition of Nash equilibria
might very well contain some irrational strategies. To exclude such imperfect
Nash equilibria containing such irrational strategies, at first he proposed
what now are called subgame-perfect equilibria (Selten, [45]). Later he pro-



John F. Nash 167

posed the even more demanding concept of trembling-hand perfect equilibria
(Selten 4 [46]) .

Reinhard’s work on evolutionarily stable strategies was likewise based on the
concept of Nash equilibria.

In my own case, an important part of my own work was likewise based on
Nash’s results. Thus, in my first game-theoretic paper [17], my main point
was to show the mathematical equivalence of Nash’s and of Zeuthen’s bargai-
ning models.

In the same paper (pp. 152 - 53), I pointed out an interesting corollary to
Nash’s theory of optimal threats: Suppose we measure the costs of a conflict
to either party in terms of von Neumann-Morgenstern utilities. Suppose also
that one bargainer makes a threat against the other. Then this will strengthen
his own bargaining position only if carrying out his threat would increase the
costs of a conflict for his opponent in a higher proportion than it would incre-
ase the costs of a conflict for him.

In a later paper [18], I extended the Shapley value to games without trans-
ferable utility and showed that my new solution concept was not only a gene-
ralization of the Shapley value, but also a direct generalization of Nash’s two-
person bargaining solution with variable threats.

A Nash equilibrium is defined as a strategy combination with the proper-
ty that every player’s strategy is a best reply to the other players’ strategies.
This of course is true also for Nash equilibria in mixed strategies. But in the
latter case, besides his mixed equilibrium strategy, each player will also have
infinitely many alternative strategies that are his best replies to the other play-
ers’ strategies. This will make such equilibria potentially unstable.

In view of this fact, I felt it was desirable to show [20], that “almost all”
Nash equilibria can be interpreted as strict equilibria in pure strategies of a
suitably chosen game with randomly fluctuating payoff functions.

K U H N

In the early sixties, I had the great good fortune to hire both John Harsanyi
and our next speaker as consultants to a project that I initiated for a research
company in Princeton, called MATHEMATICA. The project was funded by
the Arms Control and Disarmament Agency and a major topic was games
with incomplete information. Our speaker has written about this experien-
ce in his autobiographical note [47]: Reinhard Selten.

SELTEN

Let me first tell you that this intervention has been prepared by Peter
Hammerstein and myself. When John Nash published his basic papers on
‘equilibrium points in n-person games’ [35], and ‘non-cooperative games’
[38], nobody would have foretold the great impact of Nash equilibrium on
economics and social science in general. It was even less expected that
Nash’s equilibrium point concept would ever have any significance for bio-
logical theory. To most game theorists it came as a complete surprise that
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beginning with the pioneering paper by Maynard Smith and Price [31] non-
cooperative game theory, as it was founded by Nash, became one of the cen-
tral tools for understanding the evolutionary logic of animal and plant inter-
action.

EVOLUTIONARY STABILITY

Maynard Smith and Price [35] introduced the concept of an evolutionarily
stable strategy (ESS). Initially they were not aware of the relationship bet-
ween the concept of an ESS and that of a Nash equilibrium. Rational game
theory looked at mixed strategies as produced by conscious randomization.
Nash’s interpretation of a mixed equilibrium as a mass action phenomenon
was buried in his unpublished dissertation and not found in textbooks on
game theory. In biology the mass action interpretation is very natural and
guided the work on evolutionary stability already from its beginning.

In their original paper, Maynard Smith and Price [35] restricted their
attention to two-person games in normal form. They defined an ESS as a
strategy prescribed by a symmetric equilibrium point and imposed on this
strategy an additional stability requirement. This requirement had its roots
in the idea that a population in evolutionary equilibrium should be stable
against the invasion of mutants. There is no problem of instability if the
mutant does not play a best reply to the symmetric equilibrium. However, if
it plays an alternative best reply, i.e., a best reply different from the equili-
brium strategy, it may spread by genetic drift. Maynard Smith and Price argu-
ed that this is excluded if against the alternative best reply the equilibrium
strategy achieves a higher payoff than the alternative best reply itself does.
This is the additional stability requirement in the definition of an ESS.

Nowadays it almost seems to be obvious that the correct application of
Darwinism to problems of social interaction among animals requires the use
of non-cooperative game theory, but when this idea was first conceived it was
a revolutionary great insight. Of course the strategies of animals and plants
are not the result of conscious deliberation. They are thought of as beha-
vioral programs transferred by genetical inheritance from generation to
generation. Game equilibrium is achieved by the process of natural selection
which drives organisms towards the maximization of fitness. Roughly spea-
king, Darwinian fitness is the expected number of surviving offspring.

The original restriction to symmetric two-person games was soon removed
and much more general definitions of an ESS were elaborated. The fruit-
fulness of game-theoretic thinking in biology is revealed by a multitude of
intriguing applications. References to the theoretical and empirical litera-
ture can be found in our review paper (Hammerstein and Selten [16]).

THE CRISIS OF DARWINIAN ADAPTATION THEORY

In the early forties, biological thought on evolution reached a consensus
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often referred to as the ‘new synthesis’. The apparent contradiction between
Mendelian inheritance and gradual adaptation had been resolved by the
population genetic work of Fisher [11], Haldane [14], and Wright [55].
Fisher’s famous ‘fundamental theorem of natural selection’ had shown that
under appropriate assumptions about the genetical system, the mean fitness
of a population rises until a maximum is reached. However, in the sixties a
new generation of population geneticists became aware of the fact that plau-
sible genetic systems are very unlikely to satisfy the assumptions of Fisher’s
theorem. In the framework of a standard selection model, Moran [32]
found examples in which mean fitness decreases over time until an equili-
brium is reached. He looked at a two-locus model in which an evolving trait
is coded for by two genes. Later Karlin [26] showed that these examples are
not just degenerate cases.

The curious phenomenon of decreasing mean fitness becomes under-
standable if one looks at the nature of the resulting equilibrium. In this equ-
ilibrium one finds genotypes of high and low fitness but the offsprings of
high fitness genotypes can have the same mean fitness as those of low fitness
genotypes. This is an effect of recombination which tears genes at different
loci apart. The phenomenon of decreasing mean fitness is a serious chal-
lenge to the theory of Darwinian adaptation. Some population geneticists
came to the conclusion that the whole idea of fitness maximization has to be
discarded as the main explanatory principle of biological evolution. The dif-
ficulties arise in the context of what is called ‘frequency-independent selec-
tion’ or, in other words, when there is no game interaction. In the presence
of game interaction, the situation is even less favorable for the maximization
of fitness. Of course, mean fitness is not maximized by game theoretic equ-
ilibrium, but Moran’s and Karlin’s results mean that game equilibrium is not
necessarily reached.

By these developments, Darwinian adaptation theory was thrown into a
true crisis. However, very few empirically oriented biologists were really dis-
turbed by this problem. To them the crisis seemed to be one of mathemati-
cal theory rather than a failure of Darwinism as an explanation of biological
facts. They continued to be impressed by the overwhelming empirical evi-
dence for adaptation by natural selection. Nevertheless, the problem posed
a serious challenge to theory.

THE STREETCAR THEORY

The process which generates the phenomenon of decreasing mean fitness
governs the adjustment of genotype frequencies in the absence of mutations.
Eshel and Feldman [10] were the first to ask the question under what con-
ditions a stable equilibrium reached by this process is also stable against the
invasion of mutants. As has been shown by Moran [32] and Karlin [26], the
‘internal stability’ with respect to the process without mutation does not
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necessarily lead to fitness maximization of game equilibrium. However, they
succeeded to show that for an internally stable state in a sufficiently small
vicinity of an ESS, the inflow of a destablizing mutation has a tendency to ini-
tially move the system in the direction of the ESS.

This opens the possibility that the notion of an ESS has more significance
for the analysis of genetic systems than one might think if one looks only at
internal stability and not also at external stability against the invasion of
mutants. Admittedly, the results of Eshel and Feldman do not yet go very far
in this direction but they were an ingenious step towards a new genetic inter-
pretation of Darwinian adaptation. In the process of writing our review
paper for the handbook of game theory (Hammerstein and Selten [16]) , we
became intrigued by the possibility of providing a better foundation for the
application of non-cooperative game theory in biology along the lines of
Eshel and Feldman. We ended up in proving two theorems whose biological
implications we like to describe by an analogy elaborated by one of us
(Hammerstein [15]). The analogy involves a streetcar whose stops corres-
pond to internally stable states. Only at the terminal stop the population
state is phenotypically stable in the sense that the probabilities of pure stra-
tegies cannot be changed any more by the invasion of a mutant.

The first theorem shows that only a Nash equilibrium can be phenotypi-
tally stable in a standard two-locus model of population genetics with game
interaction. This means that in the long run the process of natural selection
and mutation if it converges at all, must converge to Nash equilibrium. It
therefore turns out that Nash equilibrium is of central importance for evo-
lutionary biology. Of course, the streetcar may often stay for a while at a tem-
porary stop at which some passengers exit and others enter before, finally,
the terminal stop is reached at which it stays much longer.

The second theorem shows that a phenotypically monomorphic popula-
tion state can be a terminal stop if and only if it is an ESS in the sense of
Maynard Smith and Price [31]. Wh erever one has reason to suppose that a
trait is phenotypically monomorphic, this result establishes a firm founda-
tion for the concept of an ESS. However, polymorphism is often observed
in nature and in this respect Nash equilibrium is of more far reaching signi-
ficance.

CONCLUDING REMARK

Originally, von Neumann and Morgenstern [52] developed game theory as
a mathematical method especially adapted to economics and social science
in general. In the introduction of their book, they emphasized their view
that methods taken over from the natural sciences are inadequate for their
purpose. They succeeded in creating a new method of mathematical analy-
sis not borrowed from physics. In the case of game theory the flow of met-
hodological innovation did not go in the usual direction from the natural to
the social sciences but rather in the opposite one. The basis for this extre-
mely successful transfer is the concept of Nash equilibrium.
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K U H N

About five years ago, the Economics Department at Princeton University was
fortunate to have the next speaker as a visiting professor. He has been in the
forefront of recognizing the importance of Nash’s mass action interpreta-
tion: Jörgen Weibull.

W EIBULL

THE MASS ACTION INTERPRETATION

In his unpublished Ph.D. dissertation, John Nash provided two interpreta-
tions of his equilibrium concept for non-cooperative games, one rationalistic
and one population-statistic. In the first, which became the standard inter-
pretation, one imagines that the game in question is played only once, that
the participants are “rational,” and that they know the full structure of the
game. However, Nash comments: “It is quite strongly a rationalistic and ide-
alizing interpretation” ([36], p. 23). Th e second interpretation, which Nash
calls the mass-action interpretation, was until recently largely unknown
(Leonard [28], Weibull [53], Björnerstedt and Weibull [6]). Here Nash ima-
gines that the game in question is played over and over again by participants
who are not necessarily “rational” and who need not know the structure of
the game:

“It is unnecessary to assume that the participants have full
knowledge of the total structure of the game, or the ability
and inclination to go through any complex reasoning pro-
cesses. But the participants are supposed to accumulate
empirical information on the relative advantages of the
various pure strategies at their disposal.

To be more detailed, we assume that there is a population
(in the sense of statistics) of participants for each position of
the game. Let us also assume that the ‘average playing’ of
the game involves n participants selected at random from
the n populations, and that there is a stable average frequ-
ency with which each pure strategy is employed by the ‘ave-
rage member’ of the appropriate population.

Since there is to be no collaboration between individuals
playing in different positions of the game, the probability
that a particular n-tuple of pure strategies will be employed
in a playing of the game should be the product of the pro-
babilities indicating the chance of each of the n pure strate-
gies to be employed in a random playing” ([36], pp. 21 -
22.)
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Nash notes that ifs, is a population distribution over the pure strategies a E
A, available to the i’th player position, then s = (si),,, is formally identical with
a mixed strategy profile, and the expected payoff to any pure strategy α in a
random matching between an n-tuple of individuals, one from each player
population, is identical with the expected payoff n,,(s) to this strategy when
played against the mixed strategy profile s:

“Now let us consider what effects the experience of the par-
ticipants will produce. To assume, as we did, that they accu-
mulate empirical evidence on the pure strategies at their
disposal is to assume that those playing in position i learn
the numbers X,,,(S).  But if they know these they will employ
only optimal pure strategies [...]. Consequently, since s,
expresses their behavior, s, attaches positive coefficients only
to optimal pure strategies, [...]. But this is simply a condi-
tion for s to be an equilibrium point.

Thus the assumption we made in this ‘mass-action’ inter-
pretation lead to the conclusion that the mixed strategies
representing the average behavior in each of the popula-
tions form an equilibrium point.” (op cit., p. 22)5

These remarks suggest that Nash equilibria could be identified as stationary,
or perhaps dynamically stable, population states in dynamic models of boun-
dedly rational strategy adaptation in large strategically interacting popula-
tions. In spirit, this interpretation is not far from Friedman’s [13] subsequ-
ent "as if" defense of microeconomic axioms. For just as Nash argued that
boundedly rational players will adapt toward strategic optimality, Friedman
argued that only profit maximizing firms will survive in the long run under
(non-strategic) market competition. Moreover, the view that games are play-
ed over and over again by individuals who are randomly drawn from large
populations was later independently taken up by evolutionary biologists
(Maynard Smith and Price [31], Taylor and Jonker [49]).

NOTATION AND PRELIMINARIES

Consider a finite n-player game G in normal (or strategic) form. Let A, be the
pure-strategy set of player position i E I= (I,..., n), s, its mixed-strategy sim-
plex, and S = Kl,E,S, the polyhedron of mixed-strategy profiles. For any play-
er position i, pure strategy a E Aj and mixed strategy s, E S,, let ,s,, denote the
probability assigned to α. A strategy profile s is called interior if all pure stra-
tegies are used with positive probability. The expected payoff to player posi-
tion i when a profile s E S is played will be denoted n,(s),  while n,,a(s) denotes
the payoff to player i when he uses pure strategy cx E 4 against the profile
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s E S. A strategy profile s E Sis a Nash equilibrium if and only if s,~ > 0 impli-
es 7qa(s) = max BEA,7C,p(s)

In the spirit of the “mass-action ” interpretation, imagine that the game is
played over and over again by individuals who are randomly drawn from
(infinitely) large populations, one population for each player position i in
the game. A population state is then formally identical with a mixed-strategy
profile .s E S, but now each component s, E S, represents the distribution of
pure strategies in player population i, i.e., sicl is the probability that a ran-
domly selected individual in population i will use pure strategy a E A, when
drawn to play the game. In this interpretation X,,,(S) is the (expected) payoff
to an individual in player population i who uses pure strategy cx - an “a-stra-
tegist” - and x1(s) ~~sJc~(s)  is the average (expected) payoff in player popu-
lation i , both quantities being evaluated in population state s.

Suppose that every now and then, say, according to a statistically indepen-
dent Poisson process, each individual reviews her strategy choice. By the law
of large numbers the aggregate process of strategy adaptation may then be
approximated by deterministic flows, and these may be described in terms of
ordinary differential equations.

INNOVATIVE ADAPTATION

We first consider the case when strategy adaptation is memory-less in the
sense that the time rate of strategy revision and the choice probabilities of
strategy-reviewing individuals are functions of the current state s (only):

for some functions A,, : S -+ R. The quantity A, (s) thus represents the net
increase per time unit of the population share of a-strategists in player popu-
lation i when the overall population state is s. The (composite) function f is
assumed to be Lipschitz continuous and such that all solution trajectories
starting in S remain forever in S. Such a function f will be called a vector field
for (1).
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This condition is, for instance, met if reviewing individuals move toward the
best replies to the current population state. Note that [IN ] requires no
knowledge about payoffs to other player positions, nor is any detailed know-
ledge of the payoffs to one’s own strategy set necessary. It is sufficient that
individuals on average tend to twitch toward some of the better-than-average
performing strategies.

Proposition 1 Suppose f meets [IN]. If a population state s is stationary under
the associated dynamics (1), then s constitutes  a  Nash equilibrium of G.

An example of innovative adaptation is given by

(2)

In order to incorporate memory in the dynamic process of strategy adap-
tation, one may introduce real variables Pzu, one for each player position i
and pure strategy a E A, that represent the i’th population’s recollection of
earlier payoffs to pure strategy a. Assume that the recalled payoff to any
pure strategy a E A, changes with time according to

(3)

The full adaptation dynamics with memory is then a system of differential
equations in the state vector x = (s, p) , where p moves according to (3) and s
according to
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The following extension of proposition 1 is straightforward:

a function which can be slightly modified so that it belongs to the above-dis-
cussed class (add an arbitrarily short time interval before t = 0 ).

IMITATIVE ADAPTATION

It may be argued that the above classes of population dynamics go somewhat
beyond the spirit of the mass-action interpretation since they presume that
individuals perform a certain amount of calculations. Therefore, now assu-
me no memory and no inventiveness as defined above. Thus, individuals now
switch only between strategies already in use, and they do so only on the basis
of these strategies’ current performance. Technically, this means that the
population dynamics (1) has a vector field f of the form

The involved functions gla will be called growth-rate functions - gtrx(s) being
the growth rate of the population share of pure strategy α in player popula-
tion i when the population state is s. No vector field of the form (6) is inno-
vative in the sense of condition [IN], because if all individuals in a player
population initially use only one (or a few) pure strategy then they will cont-
inue doing so forever, irrespective of whether some unused strategy yields a
high payoff or not. Consequently, stationarity does not  imply Nash equili-
brium for the present class of dynamics, which will be called imitative.

A prime example of such dynamics is the so-called replicator dynamics
used in evolutionary biology (Taylor and Jonker [49], Taylor [48]). In this
strand of literature, pure strategies represent genetically programmed beha-
viors, reproduction is asexual, each offspring inherits its parent’s strategy,
and payoffs represent reproductive fitness. Thus zzza(s) is the number of (sur-
viving) offspring to an α-strategist in population i, and x~(.s)  is the average
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We will here consider a broad class of vector fields which contains the repli-
cator vector field as a special case. The defining requirement is close in spi-
rit to that in the previous section: If there exists a pure strategy which results
in a payoff above average in its player population (whether this pure strate-
gy be currently used or not), then some such pure strategy has a positive
growth rate. Hence, if all such strategies are present in the population, then
some such population share will grow. Formally:

The next proposition establishes the following implications under payoff
positive imitation: (a) if all strategies are present in a stationary population
state, then this constitutes a Nash equilibrium, (b) A dynamically stable
population state constitutes a Nash equilibrium, (c) If a dynamic solution
trajectory starts from a population state in which all pure strategies are pre-
sent and the trajectory converges over time, then the limit state is a Nash
equilibrium.10 Claim (b) is a generalization of a result due to Bomze [7] for
the single-population version of the replicator dynamics as applied to sym-
metric two-player games, and (c) generalizes a result due to Nachbar [34].
(See Weibull [54] for a proof.)

Proposition 3 Suppose g meets [POS], and consider the associated population
dynamics (1) where f is defined in (6).

(a) If  s is interior and stationary, then s  is  a Nash equilibrium.
(b) If s is dynamically stable, then s is a Nash equilibrium.
(c) If s is the limit of some interior solution trajectory, then s is a Nash equilibrium.

Note that claims (a) and (c) involve hypotheses that no pure strategies are
extinct. Indeed, these claims are otherwise not generally valid. Implication
(b), however, allows for the possibility that some pure strategy is extinct. This
is permitted because dynamic stability by definition asks what happens when
the population state is slightly perturbed - in particular, when currently
extinct strategies enter the population in small population shares.

CONCLUSION

The mass-action interpretation of Nash equilibria is in stark contrast with the
usual rationalistic interpretation, but is closely related to ideas in evolutio-
nary game theory. It opens new avenues for equilibrium and stability analy-
sis of social and economic processes, and suggests new ways to combine
insights in the social and behavior sciences with economic theory.
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KUHN
In Reinhard Selten’s talk, he did not mention his major discovery of two refi-
nements of the concept of Nash equilibria, the so-called subgame perfect
equilibria [45] and trembling-hand perfect equilibria [46]. A large body of
research followed these discoveries; it has been summarized in a magnificent
manner in a book [50] by our next speaker: Eric van Damme.

VAN DAMME

Ideas, concepts and tools that were introduced by John Nash [36] have been
extremely important in shaping modern economic theory. He introduced
the fundamental solution concept for non-cooperative games, one of the
main solution concepts for cooperative games and he proposed the Nash
program for providing non-cooperative foundations of cooperative con-
cepts. In his analysis he introduced seminal tools and techniques that served
as essential building blocks in the later development of the theory and that
contributed to its successful application. Below we provide a perspective on
Nash’s work and trace its influence on modern economic theory.

NASH EQUILIBRIUM: THE RATIONALISTIC INTERPRETATION

A non-cooperative game is given by a set of players, each having a set of stra-
tegies and a payoff function. A strategy vector is a Nash equilibrium if each
player’s strategy maximizes his pay-off if the strategies of the others are held
fixed. In his Ph.D. thesis, Nash introduces this concept and he derives seve-
ral properties of it, the most important one being existence of at least one
equilibrium for every finite game. In published work ( [35], [38] ), Nash pro-
vides two alternative, elegant proofs, one based on Kakutani’s fixed point
theorem, the other based directly on Brouwer’s theorem. These techniques
have inspired many other existence proofs, for example, in the area of gene-
ral equilibrium theory (see [9]).

In the section “Motivation and Interpretation” of his thesis, Nash discusses
two interpretations of his equilibrium concept. The first, “mass-action” inter-
pretation is discussed in Jorgen Weibull’s contribution to this seminar. Here,
we restrict ourselves to the “rationalistic and idealizing interpretation” which
is applicable to a game played just once, but which requires that the players
are rational and know the full structure of the game. Nash’s motivation runs
as follows:

“We proceed by investigating the question: What would be
a “rational” prediction of the behavior to be expected of
rational playing the game in question? By using the princi-
ples that a rational prediction should be unique, that the
players should be able to deduce and make use of it, and
that such knowledge on the part of each player of what to
expect the others to do should not lead him to act out of
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conformity with the prediction, one is led to the concept of
a solution defined before.” [36]

In other words, a theory of rational behavior has to prescribe the play of a
Nash equilibrium since otherwise the theory is self-destroying. Note that the
argument invokes three assumptions: (i) players actively randomize in choo-
sing their actions, (ii) players know the game and the solution, and (iii) the
solution is unique. Later work has scrutinized and clarified the role of each
of these assumptions. Harsanyi ([20]) showed that a mixed strategy of one
player can be interpreted as the beliefs (conjectures) of the other players
concerning his behavior. This reinterpretation provides a “Bayesian” foun-
dation for mixed strategy equilibria and eliminates the intuitive difficulties
associated with them. Aunrann developed the concepts of an interactive beli-
ef system, which provides a formal framework for addressing the epistemic
conditions underlying Nash equilibrium, i.e., it allows one to formalize play-
ers’ knowledge and to investigate how much knowledge is needed to justify
Nash equilibrium. In 2-player games less stringent conditions are sufficient
than in general n-player games. (Aumann and Brandenberger [4])

Since the rationalistic justification of equilibria relies on uniqueness, mul-
tiplicity of equilibria is problematic. Nash remarks that it sometimes hap-
pens that good heuristic reasons can be found for narrowing down the set of
equilibria. One simple example that Nash provides (Ex. 5 [38]) is the game
that is reproduced here in Figure 1. This game has equilibria at (a, α) and
(b, Jr’), as well as a mixed equilibrium. Nash writes that “empirical tests show
a tendency toward (n, (x) ,” but he does not provide further details. One heu-
ristic argument is that (a, a) is less risky than (0, J), an argument that is for-
malized by Harsanyi and Selten’s [23] concept of risk dominance. It figures
prominently both in the literature that builds on the “rationalistic interpre-
tation” as well as in the literature that builds on the “mass-action” inter-
pretation of Nash equilibrium. We will return to it in EQUILIBRIUM
SELECTION.

Fig. 1
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THE NASH PROGRAM

It can be said that the “rationalistic argument” leading to Nash equilibrium
was already discussed in von Neumann and Morgenstern [52] cf. their “indi-
rect argument” (pp. 147 - 148). They advocate the (equilibrium) solution
implied for the 2-person zero-sum case, however, they argue that this solution
is not satisfactory for games outside this class, since in these one cannot
neglect coalitions nor the possibility that players will want to make payments
outside the formal rules of the game (p. 44). They argue that for these
games “there seems no escape from the necessity of considering agreements
concluded outside the game” (p. 223) and they see themselves forced to assu-
me that coalitions and agreements concluded outside of the game are
respected by the contracting parties (p. 224). Hence, they end up with
having two distinct theories.

Nash proposes to distinguish between cooperative and non-cooperative
games. In games of the latter type, players are unable to conclude enforcea-
ble agreements outside the formal rules of the game. Cooperative games
allow such agreements. Nash suggests that non-cooperative games are more
basic, that cooperative games may fruitfully be analyzed by reformulating
them as non-cooperative ones and by solving for the Nash equilibria. This
approach has come to be known as the Nash program. It allows unification of
the theory and enables a better understanding of the different solution con-
cepts that have been proposed in cooperative theory. (See Harsanyi [21] for
an example dealing with the von Neumann and Morgenstern stable set con-
cept; also see BARGAINING THEORY.) By following the Nash program, an
abstract discussion about the “reasonableness” of certain outcomes or prin-
ciples can be replaced by a more mundane discussion about the appropria-
teness of the rules of the game.

The non-cooperative approach also has its limitations. First, values can be
obtained only if the game has a unique solution, i.e., one has to address the
equilibrium selection problem. Secondly, the non-cooperative model must
at the same time be relevant - similar to reality in its essential aspects, and
mathematically tractable. Consequently, the axiomatic approach - which
aims to derive the outcome directly from a set of ‘convincing’ principles, is
not redundant. On the contrary, if a solution can be obtained from a con-
vincing set of axioms, this indicates that the solution is appropriate for a
wider variety of situations than those captured by the specific non-cooperati-
ve model. As Nash concludes “The two approaches to the problem, via the
negotiation model or via the axioms, are complementary; each helps to jus-
tify and clarify the other.” ([39], p. 129)

BARGAINING THEORY

According to orthodox economic theory, the bargaining problem is indeter-
minate: The division of the surplus will depend on the parties’ bargaining
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skills. Nash breaks radically with this tradition. He assumes that bargaining
between rational players leads to a unique outcome and he seeks to deter-
mine it. He solves the problem in the 2-person case and he derives his solu-
tion both by means of the axiomatic approach and as the outcome of a non-
cooperative model.

In Nash [39] the axiomatic method is described in the following way:

“One states as axioms several properties that it would seem
natural for the solution to have and then one discovers that
the axioms actually determine the solution uniquely.” ([39],
p. 129)

In the case of the fixed-threats, Nash’s basic axioms are that rational players
are characterized by von Neumann Morgenstern utility functions, and that
the bargaining situation is fully represented by its representation, Bin utility
space. Three axioms specify the relation which should hold between the
solution and the set B: (i) Pareto efficiency, (ii) symmetry and (iii) inde-
pendence of irrelevant alternatives. These axioms determine the solution to
be that point on the north-east boundary of B where the product of the uti-
lities, uiu+ is maximized.

Axion (iii) states that, if the set of feasible utility pairs shrinks but the solu-
tion remains available, then this should remain the solution. It is more dif-
ficult to defend than the others and there has been considerable discussion
of it in the literature. Nash writes that it is equivalent to an axiom of “locali-
zation”, specifically “Thinking in terms of bargaining, it is as if a proposed
deal is to compete with small modifications of itself and that ultimately the
negotiation will be understood to be restricted to a narrow range of alterna-
tive deals and to be unconcerned with more remote alternatives.” ([39], p
139.) Recent developments in non-cooperative bargaining theory (which
build on the seminal paper [42]) have confirmed this interpretation.
Namely, assume players alternate in proposing points from B until agree-
ment is reached. Assume that if an offer is rejected there is a small but posi-
tive probability that negotiations break down irrevocably. This game admits
a unique subgame perfect Nash equilibrium (see EQUILIBRIUM REFINE-
MENT) and agreement is reached immediately. The equilibrium condition
states that each time each responder is indifferent between accepting the
current proposal and rejecting it. Consequently, the equilibrium proposals
are close together when the stopping probability is small, hence, we obtain
“localization” property. Indeed the equilibrium conditions imply that both
equilibrium proposals have the same Nash product, hence, since they have
the same limit, they converge to the Nash solution.

Of course, it is gratifying to find that this natural bargaining model imple-
ments Nash’s bargaining solution. However, even more important is that this
application of the Nash program may clarify some ambiguities concerning
the choice of the threat point in applications of the Nash bargaining model.
(See [5] for further discussion.)
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In the variable threat case, each party has a choice how much pressure to put
on the other. The theory now has to determine both the threats that the
players will use in case they don’t agree, as well as the agreement that will be
concluded. Two additional axioms allow reduction of the problem to the
case with fixed threats and, hence, determine the theory. The first is equi-
valent to assuming that each player has an optimal threat strategy, i.e., it is
postulated that the problem admits a solution. The second says that a play-
er cannot improve his payoff by eliminating some of his strategies. In the
non-cooperative approach, Nash assumes that players first commit themsel-
ves to their threats. Players will be forced to execute their threats if they can-
not come to an agreement in the second stage. Each pair of threats induces
a (fixed-threat bargaining) subgame in which the distinguished equilibrium
that maximizes the product of the utility gains is selected. Applying back-
wards induction and using this selection (i.e., by replacing each subgame
with its unique solution), the choice of threat strategy in the first stage essen-
tially reduces to a strictly competitive game, i.e., this reduced first stage game
has an equilibrium with minmax properties. Consequently, the overall game
has a value and optimal threat strategies. Needless to say, the solution obtai-
ned by the non-cooperative approach coincides with that obtained by means
of the axioms.

EQUILIBRIUM REFINEMENT

Nash equilibrium expresses the requirement that a theory of rational beha-
vior recommends to each player a strategy that is optimal in case all of the
other players play in accordance with the theory. It imposes no conditions
concerning behavior after a deviation from the theory has occurred. von
Neumann and Morgenstern, however, already argued that a solution con-
cept should also address the question of how to play when the others do not
conform and that, in the presence of “non-conformists”, a believer in the
theory should still be willing to follow the theory’s advice. It turns out that
not all Nash equilibria have this desirable property: After a deviation from
the equilibrium has occurred, a believer in this equilibrium may prefer to
deviate from it as well. As an example, modify the game from Figure 1 such
that player I (the “row player”) makes his choice before player 2, with this
choice being revealed before the latter makes his decision. The strategy pair
in which player 1 chooses a and player 2 responds with α no matter what
player 1 chooses, is a Nash equilibrium. However, the equilibrium action of
player 2 is not optimal if player I deviates and chooses b : In that case player
2 prefers to deviate to β. The equilibrium relies on a non-credible threat of-
player 2.

A clear discussion of the credibility issue can already be found in Nash’s
work on variable threat bargaining. Nash’s paper is appropriately called
“Two-person Cooperative Games” since it relies essentially on the existence
of an umpire who enforces contracts and commitments, Nash writes “it is



182 Economic Sciences 1994

essential for the success of the threat that A be compelled to carry out his thre-
at if B fails to comply. Otherwise it will have little meaning. For, in general,
to execute the threat will not be something A would want to do, just of itself.”
(Nash [39], p. 130).

To eliminate equilibria that rely on non-credible threats, various refine-
ments of the Nash equilibrium concept have been proposed, which will not
be surveyed here see [50]. Let us just note that two papers of Reinhard
Selten were fundamental. Selten [45] argues that a theory of rational beha-
vior has to prescribe an equilibrium in every subgame since otherwise at least
one player would have an incentive to deviate once the subgame is reached.
He calls equilibria having this property subgame perfect. They can be found
by a backwards induction procedure. Unfortunately, this procedure gene-
rally does not eliminate all “questionable” equilibria. Selten [46] suggests a
further refinement that takes the possibility of irrational behavior explicitly
into account, i.e., he suggests viewing perfect rationality as a limiting case of
incomplete rationality. Formally, he considers slightly perturbed versions of
the original game in which players with small probabilities make mistakes
and he defines a (trembling hand) perfect equilibrium as one that is a limit
of equilibrium points of perturbed games. It is interesting to note that Nash
already discussed a game with an imperfect equilibrium (see Ex. 6 in [39]).

This suggestion to discriminate between equilibria by studying their rela-
tive stabilities had already been made in Nash’s work on bargaining (see
EQUILIBRIUM SELECTION). An important difference between Selten’s
approach and that of Nash, however, is that Selten requires stability only with
respect to some perturbation, while Nash insisted on stability against all per-
turbations in a certain class. Consequently, a game typically allows multiple
perfect equilibria. Kohlberg and Mertens [27] have argued that Selten’s per-
fectness requirement is not restrictive enough and they have proposed
various refinements that require stability, of sets of equilibria, with respect to
all perturbations in a certain class. At present, the debate is still going on of
whether these strong stability requirements indeed capture necessary requi-
rements of rational behavior. What can be said, however, that Nash’s ideas
were fundamental in shaping this research program.

EQUILIBRIUM SELECTION

We have already argued that, since the rationalistic interpretation of Nash
equilibrium relies essentially on the uniqueness assumption, the fact that a
game frequently has multiple equilibria makes the equilibrium selection
problem prominent. Nash already encountered this problem and in his
study of the fixed-threat bargaining problem. In Nash’s non-cooperative
model both players simultaneously state their demands and if the pair of
demands is feasible then each player gets his demand; otherwise disagree-
ment results. Clearly, any pair of demands that is Pareto efficient constitutes
a pure equilibrium of the game. The following quote describes the multi-
plicity problem as well as Nash’s solution of it
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“Thus the equilibrium points do not lead us immediately to
a solution of the game. But if we discriminate between them
by studying their relative stabilities we can escape from this
troublesome non-uniqueness. To do this we “smooth” the
game to obtain a continuous pay-off function and then
study the limiting behavior of the equilibrium points of the
smoothed game as the amount of smoothing approaches
zero.” ([39], pp. 131 - 132)

The smoothed game is determined by a continuous, strictly positive, func-
tion h, where h(d) can be interpreted as a probability that the demand vector
d is compatible. (It is assumed that h(d) = 1 if d is feasible in the unpertur-
bed problem, i.e., d E B, and that h tapers off very rapidly towards zero as d
moves away from B.) The smoothed game, in which players i’s payoff func-
tion is u,h(d)  = dh,(d) can be thought of as representing uncertainties in the
information structure of the game, the utility scales, etc. ([39], p. 132). Any
maximizer of the function d,d,h(d) is an equilibrium of this perturbed game
and all these maximizers converge to the unique maximizer of the function
uluZ  on B as the noise vanishes. Furthermore, if h varies regularly, the per-
turbed game will have the unique maximizer of d,d,h(d) as its unique equili-
brium. It follows that the Nash bargaining solution is the unique necessary
limit of the equilibrium points of the smoothed games. Consequently, the
original game has only one “robust” equilibrium, which may be taken as the
solution of the game.

Building on Nash’s ideas, and motivated by the attempt to generalize
Nash’s bargaining solution to games with incomplete information, Harsanyi
and Selten [22] construct a coherent theory of equilibrium selection for
general games. A crucial concept in this theory is that of risk dominance,
and the influence of Nash’s ideas on the theory is demonstrated by the fol-
lowing quote:

“Our attempts to define risk dominance in a satisfactory way
have been guided by the idea that it is desirable to reprodu-
ce the result of Nash’s cooperative bargaining theory with
fixed threats. The Nash-property is not an unintended by-
product of our theory.” ([22], p. 215)

The Nash-property that is referred to in this quote is the property that in cer-
tain classes of games (such as unanimity games and P-person 2 x 2 games)
the selected equilibrium is the one for which the product of the losses asso-
ciated with deviating from the equilibrium is largest. For example, in the
game of Figure 1, the equilibrium (a, a) has a Nash product of 30, while the
Nash-product of (b, J?) is 6. Hence, (a, (x) risk-dominates (6, J) For the spe-
cial case of 2 x 2 games, Harsanyi and Selten derive the risk-dominance rela-
tion from a convincing set of axioms that resembles those with which Nash
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justifies his bargaining solution. For more general games, risk dominance
cannot be based on a simple comparison of Nash products and it is not clear
that Harsanyi and Selten’s definition (which is based on the tracing proce-
dure and which will not be given here) is the most appropriate one. Carlsson
and van Damme [8] compare several concepts that all derive their inspira-
tion from Nash’s work and that coincide with Nash’s solution for 2 x 2 games,
but that yield different outcomes outside of this class. In any case it is clear
that Nash’s ideas figure prominently in the theory of equilibrium selection.

EXPERIMENTAL GAMES

In the previous sections, we have documented the influence of Nash’s ideas
on the development of normative, rationalistic game theory. This paper
would be incomplete if it would not also mention the pioneering work of
Nash, together with Kalisch, Milnor and Nering [25] in experimental eco-
nomics. That paper reports on a series of experiments concerning n-person
games and aims to compare various theoretical solution concepts with the
results of actual play, i.e., it deals with the behavioral relevance of the ratio-
nalistic theory. The authors find mixed support for various theoretical solu-
tion concepts and they discuss several reasons for the discrepancy between
theoretical and empirical results. Among others, the role of personality dif-
ferences, the fact that utility need not be linear in money and the importan-
ce of apparent fairness considerations are mentioned. In addition, several
regularities are documented, such as framing effects, the influence of the
number of players on the competitiveness of play, the fact that repetition of
the game may lead to more cooperative play, and the possibility of inducing
a more competitive environment by using stooges. As documented by the
importance of the above mentioned concepts in current experimental eco-
nomics, the paper is an important milestone in the development of descrip-
tive game theory. (See [41]).

A second important contribution of Nash to the experimental economics
literature is his discussion of the repeated prisoners’ dilemma experiment
conducted by Melvin Dresher and Merrill Flood. In this experiment, two
players played 100 repetitions of a prisoners’ dilemma. They did not con-
stantly play the one-shot equilibrium, but they also did not succeed in rea-
ching an  efficient outcome either. The experimenters view their experiment
as a test of the predictive relevance of the one-shot equilibrium and they
interpret the evidence as refuting this hypothesis. Nash, however, argues that
the experimental design is flawed, that the repeated game cannot be thought
of as a sequence of independent games and he suggests that the results
would have been very different if the interaction between the trials had been
removed. He concedes that constant repetition of the static equilibrium is
the unique equilibrium of the overall game, but he argues that a pair of trig-
ger strategies (“Cooperate as long as the other Cooperates, Defect forever as
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soon as the other has Defected once”) is nearly in equilibrium and that this
pair is an exact equilibrium in the infinitely repeated game. Furthermore,
he suggests that the situation might actually be better represented by the lat-
ter game “since 100 trials are so long that the Hangman’s Paradox cannot
possibly be well reasoned through on it”. (Nash in [12]) Hence, he not only
specifies an appropriate design for testing static equilibrium predictions; he
also describes the essential insight in the theory of repeated games and he
points to a specific form of bounded rationality as an explanation for obser-
ved discrepancies between theoretical predictions and empirical outcomes.

CONCLUSION

Aumann [2] has forcefully argued that a game theoretic solution concept
should be judged primarily by the insights that it yields in applications, by “its
success in establishing relationships and providing insights into the workings
of the social processes to which it is applied” (pp. 28 - 29). On this score,
“Nash equilibrium is without a doubt the most “successful” - i.e., widely used
and applied - solution concept of game theory” (p. 48). Indeed, much of
the modern literature in economics (and related disciplines) takes the follo-
wing form: A social situation is modeled as a non-cooperative game, the
Nash equilibria of the game are computed and its properties are translated
into insights into the original problem.

The Nash bargaining solution can also be considered a very successful
solution concept since it has also been applied frequently. Of course, its
scope is much more limited than that of the equilibrium concepts.
Furthermore, because of its more abstract nature, it is associated with ambi-
guities, which might inhibit successful applications. Such ambiguities may be
resolved by application of the Nash program, i.e., by making explicit the bar-
gaining process by means of which agreements are reached and by solving
the resulting game for its equilibria.

The problems associated with multiplicity of equilibria and with the fact
that not all equilibria need correspond to rational behavior, have hampered
successful application of the Nash program. Nash resolved these difficulties
for the special case of 2-person bargaining games. Inspired by his ideas and
building on his techniques an important literature dealing with these issues
has been developed, which enables the analysis and solution of more com-
plicated, more realistic games. Hence, the domain of applicability of non-
cooperative game theory has been extended considerably. It is to be expec-
ted that, as a result, our insights into the workings of society will be enhan-
ced as well.

KUHN

I would now like to open the floor to questions for any of the participants
including John Nash. I shall invoke a privilege of the chair to pose a ques-
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tion to him. Why did you not publish the interpretations which are in your
thesis when it was made the basis of the article [38], in the Annals of
Mathematics?

NASH

I am afraid I can’t, simply can’t answer that question. I really don’t remem-
ber, but I do know that Tucker changed the form of what was to be my the-
sis and that the paper “Two person cooperative games”, which might have
been incorporated originally, if it had been allowed to, was not included. So
that became a separate publication in Econometrica, differentiated from the
rest of it, while that which could be presented more as a mathematical paper
went into the Annals of Mathematics. So I don’t know whether it was just pru-
ned down in style for the Annals of Mathematics.

KUHN

It is certainly the case that the Annals of Mathematics has different standards
than economics journals, and it may well have pruned down by an editor or
a reviewer there, but I think it is a great shame, because the delay in recog-
nizing these interpretations has been marked, I know that Jörgen Weibull
was especially prominent in bringing forward the mass interpretation, and I
think Eric has shown today that the reexamination, having the thesis availa-
ble, has been very fruitful for a number of people. The meeting is now open
to questions from anyone.

WERNER GüTH (Humboldt University of Berlin)
I just want to ask one question, because I think John Nash proved a generic
result by showing that for every finite game there exists a Nash equilibrium
point. I found the assumptions that there are only finitely many strategies
very intuitive, very natural, but of course to prove it you have to assume that
you can vary the mixed strategies continuously. And if I now think that
having only finitely many actions available is very natural. I also have to assu-
me that only finitely many options in randomizing are available. Would you
agree that this should be viewed as an assumption for the definition of ratio-
nal players to justify that a player can continuously vary probabilities in choo-
sing pure actions? How do you justify it? Otherwise I would have the con-
ceptual philosophical problem. I think I can live with this finitely many
actions, but the Nash theorem somehow has to rely on continuous variation
of probabilities. Would you also see it as an assumption of rational players, so
it is more philosophical. Thank you.

NASH

That’s really a philosophical question. Mathematically of course it is clear
that you must have the continuity. You can get quite odd numbers in fact. I
think if you have two players and you have the mixed strategies, you have spe-
cific numbers that are rational, but if you have more players you get algebraic
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numbers. So if there is some philosophical basis on which that type of num-
ber cannot be arrived at, describing a mixed strategy, then that’s out.

There is something I just wanted to say. When I heard about the Nobel
awards, and I heard that the persons were who they were, I wondered how
they were connected. Of course I knew that Harsanyi and Selten made some
use of the concept of equilibrium points or Nash equilibrium points, but I
wondered what else there was of interrelation, and I started reviewing things,
because I hadn’t been following the field directly. And I discovered this
book: “A General Theory of Equilibrium Selection in Games [23] which I
think was published in 1988 by joint authors Harsanyi and Selten, and then
I discovered also that in relation to this book, from opinions expressed about
it, that it is very controversial. It’s very interesting, but also somewhat con-
troversial. And talking to some persons I found that impression is sort of con-
firmed, that there may be specific aspects of it that are not immediately
accepted. But something can be more interesting if it is not immediately
accepted. So there is the problem; the possibility that all cooperative games
could really be given a solution. This could be analogous to the Shapley
value. If it were really valid you would be able to say, here is a game, here are
the possibilities of cooperation, binding agreements, threats, everything, this
is what it is worth to all the players. You have a management-labor situation,
you have international politics, the question of membership in the common
market; this is what it is worth. That is, if everything could be measured or
given in terms of utilities. So the possibility that there could be something
like that is very basic, but Shapley would have had that very early if the
Shapley value were really the true value. But one example in this book I stu-
died shows how the solution considered there in fact differs from the
Shapley value, and so it is a very interesting comparison. In principle, expe-
riments might distinguish between different theories, so I think that’s a very
interesting area. I think there will be further work. I had better not say too
much, because of course Harsanyi and Selten will be speaking tomorrow and
I don’t exactly know that they, Harsanyi and Selten, what they will say.

NOTES

1 Actually, Nash also assumed that in a non-cooperative game, the players
will be unable to communicate with each other. Yet, in my own view, this
would be a needlesssly restrictive assumption. For if the players cannot
enter into enforceable agreements, then their ability to communicate will
be of no real help toward a cooperative outcome.

2 Note that Nash equilibria seem to be the only solution concept applying
both to games in normal form and in extensive form.

3 Nash here refers to his theory of non-cooperative games based on the
concept of Nash equilibria.

4 He does not use the term “trembling-hand perfect” equilibria. But this is
the term used by many other game theorists to describe this class of Nash
equilibria.
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